Home Page Contact Us Inst

Relevant Projects

Photo of Benny Kimelfeld
Associate Professor
Dynamic Database Embeddings with FoRWaRD

We study the problem of computing embeddings tuples of a relational database in a manner that is extensible to dynamic changes of the database. Importantly, the embedding of existing tuples should not change due to the embedding of newly inserted tuples (as database applications might rely on existing embeddings), while the embedding of all tuples, old and new, should retain high quality. Our preliminary solutions show promising results relative to the alternatives, consistently and often considerably.

Properties of Inconsistency Measures for Databases

How should we quantify the amount of inconsistency in the database?

Proper inconsistency measures are important for various tasks, such as progress indication and action prioritization in data cleaning, and reliability estimation for datasets. We investigate a collection of basic measures in both the Knowledge Representation and Database communities, analyze their theoretical properties, and empirically observe their behavior in an experimental study. We demonstrate how the framework can lead to new inconsistency measures by introducing a new measure that satisfies all of the properties we consider and can be computed efficiently.